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Abstract—The paper outlines a methodology for analyzing daily stock
returns that relinquishes the assumption of global stationarity. Giving up
this common working hypothesis reflects our belief that fundamental
features of the financial markets are continuously and significantly chang-
ing. Our approach approximates the nonstationary data locally by station-
ary models. The methodology is applied to the S&P 500 series of returns
covering a period of over seventy years of market activity. We find most
of the dynamics of this time series to be concentrated in shifts of the
unconditional variance. The forecasts based on our nonstationary uncon-
ditional modeling were found to be superior to those obtained in a
stationary long-memory framework and to those based on a stationary
Garch(1,1) data-generating process.

I. Introduction

THIS paper reports the results of a nonstationary analysis
of the time series properties of daily returns of the S&P

500 index between January 1928 and May 2000: more than
seventy years of financial market history. Nonstationary
modeling has a long tradition in the econometric literature
that focuses on modeling financial returns predating the
currently prevalent stationary, conditional paradigm [of
which processes of the autoregressive conditionally het-
eroskedastic (ARCH) type and stochastic volatility models
are outstanding examples]; see, for example, Officer (1976)
or Hsu, Miller, and Wichern (1974). Our endeavor is moti-
vated by growing evidence of instability in the stochastic
features of stock returns1 as well as by an increased aware-
ness of the severe consequences of assuming stationarity
when it is not a good modeling approximation (Stărică,
2003; Herzel, Nord, & Stărică, 2004). The project addresses
three central questions.

The first question is methodological: How can one ana-
lyze index returns in the nonstationary conceptual frame-
work? Our approach is to approximate the nonstationary
data locally by stationary models. The changing nature of

the probabilistic features of the data—their marginal distri-
bution and dependence structure—imposes a periodic up-
dating of the approximating stationary model. The goal of
our methodology is identifying the intervals of homogene-
ity, that is, the intervals where a certain estimated stationary
model describes the data well. On an interval of homoge-
neity the parameters of the data-generating process do not
vary much relative to the estimation error of the parameters
of the stationary model used as an approximation2 (see
Härdle, Spokoiny, & Teyssière, 2000). The main tool in
identifying the homogeneity intervals is a goodness-of-fit
test for linear models in the spectral domain, related to the
ones proposed in Picard (1985) and Klüppelberg and Mi-
kosch (1996) (see section II of this paper for a detailed
description of the methodology, and section III for the
relevant statistical results concerning the goodness-of-fit
test).

A second, related question is: What type of (major)
nonstationarities affect the S&P 500 returns? The in-depth
analysis in sections IV to VI as well as the forecasting
results in sections VII and VIII indicate the time-varying
second unconditional moment as the main source of non-
stationarity of returns on the S&P 500 index.3

The third question is conceptual: How should we inter-
pret the slow decay of the sample autocorrelation function
(ACF) of absolute returns? Should we take it at face value,
supposing that events that happened a number of years ago
have an effect on the present dynamics of returns? Or are the
nonstationarities4 in the returns responsible for its presence?
The answer to this question has important implications for
estimation and forecasting. In the first case a long history of
the time series would carry significant information; in the
second case only a short past will be of much use in forecast-
ing. A commonly held belief in the econometric community is
that taking the slow decay of the sample ACF at face value
(even though it might be caused by nonstationary changes in
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1 See, for example, Stock and Watson (1996). Recently, a growing body
of econometric literature (for example, Diebold, 1986; Lamoureux &
Lastrapes, 1990; Simonato, 1992; Cai, 1994; Lobato & Savin, 1998;
Mikosch & Stărică, 2004) has argued that most of the features of return
series that puzzled, through their omnipresence, the so-called stylized
facts, including the ARCH effects, the slowly decaying sample ACF for
absolute returns, and the IGARCH effect [for definitions and details see
Mikosch and Stărică (2003)], are manifestations of nonstationary changes
in the dynamic of returns.

2 For example, if the data-generating process of returns is an indepen-
dent sequence of random variables with time-changing unconditional
variance, then an interval of homogeneity is a period of time when one has
reasons to believe that the variance is almost constant (more precisely, that
the change in variance cannot be distinguished from estimation error). On
the intervals of homogeneity, one approximates the (slowly) changing
unconditional variance of returns with a constant. Hence, in the end, the
changing pattern of unconditional variance will be approximated by a step
function. The resulting model is a process with piecewise constant
variance.

3 Our findings and the modeling methodology that they motivate follow
in the steps of Officer (1971) and Hsu et al. (1974). The former, using a
nonparametric approach to volatility estimation, reported evidence of a
time-varying second moment for the time series of returns on the S&P 500
index and industrial production. The latter modeled the returns as a
nonstationary process with discrete shifts in the unconditional variance.

4 The list of relevant references includes Hidalgo and Robinson (1996),
Lobato and Savin (1998), Granger and Hyung (1999), Granger and
Teräsvirta (1999), Diebold and Inoue (2001), and Mikosch and Stărică
(2004).
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the unconditional variance) is a meaningful way of making use
of the past in forecasting the future. In other words, estimating
long-memory stationary models (based on the slow decay of
the sample ACF) and using them in forecasting exploits in a
meaningful way the patterns of change observed in the past. In
section VII we investigate the relevance of this assumption by
means of a comparison of the forecasting performance of a
stationary long-memory process estimated on the series of
absolute returns with that of a model based on the paradigm of
changing unconditional variance. The results seem to show the
superiority of the second method, supporting the hypothesis
that the changes of the unconditional variance are the source of
long memory in absolute stock returns.

As the paper addresses the issue of volatility and pro-
poses a novel modeling paradigm, a comparison with the
Garch framework, the current market leader in volatility
modeling, is inevitable. In section VIII we present the
results of a forecasting comparison of our methodology with
that based on a Garch(1,1) model. We find that the nonsta-
tionary unconditional approach produces significantly better
volatility forecasts at longer time horizons, between 10 and
250 days.

II. Delimitation of Intervals of Homogeneity

From a traditional time series point of view, the informa-
tion contained in the time series of daily returns can be split
into two components: the sign of the returns and their size.
Empirical evidence shows that the sign of daily returns is
not predictable. Hence in what follows we will concentrate
on studying the time series of absolute returns. More pre-
cisely, due to the presence of heavy tails in the absolute
returns, we analyze the logarithm of the absolute values of
daily returns,5 Xt :� log�rt�.

In what follows we assume that Xt follow a locally
stationary process in the sense of Dahlhaus (1997). In
words, we assume that the stochastic features of the data-
generating process of the absolute values of daily returns
(that is, the marginal distribution and the dependence struc-
ture) evolve slowly and smoothly through time as a result of
continuous changes in financial markets.

Our methodology consists in locally approximating the
dynamics of the data Xt with stationary linear models.
Assume, for example, that Xt are generated by an ARMA
process with parameters that are smooth functions of time:

��t,B��Xt � ��t�� � ��t,B� Zt, Zt � 	�t�
t , (1)

where 
t i.i.d. with E
t � 0, E
t
2 � 1, and B denotes the

back-shift operator.6 Our approach yields an approximation
of the functions �(t, B), �(t, B), �(t), 	2(t) with step
functions that are constant on appropriately defined homo-

geneity intervals. This section describes our approach to
identifying the homogeneity intervals of the series Xt.

A linear process Xt with unconditional mean � is defined
as

Xt � � � �
j���

�

jZt�j � �B� Zt, t � � , (2)

where the innovations (Zt) are a sequence of i.i.d. random
variables with mean 0 and finite variance 	2, and

� z� � �
j���

�

jz
j .

The assumption

�
j���

�

�j� j � �

ensures that Xt is properly defined as an a.s. absolutely
converging series. The linear process (2) has the spectral
density function

f��� � ��e�i���2	2/�2��, � � �0,�� , (3)

and the spectral distribution function

F��� � �
0

�

f� x�dx

�
	2

2� �
0

�

��e�ix��2dx, � � �0,�� .

In the sequel, the linear process (2) with mean �, noise
variance 	2, and spectral density f will be compactly
denoted by ��,	2,f.

The intervals of homogeneity are constructed by moni-
toring the changes in the spectral distribution function of Xt

as follows.7 Assume we know that the subsample Xm1
,

Xm1�1
, . . . , Xm2

is well described by ��,	2,f, a linear para-
metric model with mean �, noise variance 	2, and spectral
density f. In other words, assume that the interval of
homogeneity under construction contains at least the obser-
vations m1 up to m2. We want to decide whether the
following p observations, Xm2�1

, . . . , Xm2�p
, also belong to

the interval. To accomplish this, we test the hypothesis
that the linear model ��,	2,f fits well the subsample
Xm2�p�s

, . . . , Xm2�p
that contains the p new data points (the

5 The implications of this analysis for the model choice of the series of
returns (rt) are also discussed in sections V and VI.

6 This type of stochastic process is a locally stationary process in the
sense of Dahlhaus (1997).

7 The method is related to the one proposed in Picard (1985) for
detecting changes in the spectral distribution function of a time series, and
further developed for various linear processes, under mild assumptions on
the moments of X and the coefficients of the process, by Giraitis and
Leipus (1992) and Klüppelberg and Mikosch (1996).
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size s of the subsample on which the test is conducted is
kept constant). A test statistic T(n, X, ��,	2,f) with a known
asymptotic distribution to be specified in the sequel [see
equation (6)] is calculated. As the notation emphasizes, the
test statistic T(n, X, ��,	2,f) is a function of the subsample
Xm2�p�s

, . . . , Xm2�p
as well as of the model ��,	2,f. The

value obtained is compared with the asymptotic distribution
of the test statistic under the null hypothesis that the sub-
sample Xm2�p�s

, . . . , Xm2�p
is a stationary sequence from the

model ��,	2,f. If the value of the statistic falls within the
asymptotic confidence interval, the homogeneity interval is
extended to include the observations Xm2�1

, . . . , Xm2�p
. Oth-

erwise a new homogeneity interval commences with the
block Xm2�p�s

, . . . , Xm2�p
. The model to describe the data

dynamic on the new interval of homogeneity is estimated on
this block. The estimated parameters are then assumed to be
the true parameters of the new data-generating process, and
the procedure of building a homogeneity interval is reiter-
ated.8

III. A Goodness-of-Fit Test Based on Bartlett’s
Weighted Integrated Periodogram

We concentrate now on the statistical aspects of the goodness-
of-fit test central to the methodology presented above. In this
section we define the test statistic T(n, X, ��,	2,f) and
specify its asymptotic distribution. Let

�n,Y�h� �
1

n
�
t�1

n�h

�Yt � ���Yt�h � ��,

h � 0,1,2, . . . , n � 1 ,

denote the sample autocovariance function of the stationary
sequence Yt centered at the true mean �. Recall that the
periodogram defined as

In,Y��� �
1

2�
(4)

� ��n,Y�0� � 2 �
h�1

n�1

�n,Y�h� cos h��, � � �0,��,

is the natural (method-of-moments) estimator of the spectral
density fY of the stationary sequence (Yt); see Brockwell and
Davis (1991) or Priestley (1981).

If the linear model ��,	2,f defined in equation (2) is
the true data-generating process for the subsample
Xm2�p�s

, . . . , Xm2�p, the covariances observed in the data
ought to match up9 to the covariances implied by the linear
process. The information on the covariance structure of the
data is conveniently summarized by the integrated perio-
dogram or empirical spectral distribution function

Jn,X���:��
0

�

In,X�y� dy �
1

2�

� ���n,X�0� � 2 �
h�1

n�1

�n,X�h�
sin �h

h � (5)

for � � [0, �]. Under general conditions, the integrated
periodogram is a consistent estimator of the spectral distri-
bution function given by

FX��� � �
0

�

fX� x�dx, � � �0,�� ,

provided the density fX is well defined.
The test statistic is defined as

T(n,X,��,	2,f): � sup
���0,��

��
��

� �In,X�y�

f
�

	̂2

	2�dy� , (6)

where

	̂2: � �
��

� In,X� z�

��e�iz��2 dz (7)

is an estimate of 	2. The test statistic is a function of the
data, through the periodogram In,X (y), as well as of the
hypothesized model ��,	2,f

.
Note that the test statistic (6) does not involve directly the

integrated periodogram as defined by equation (5). Instead,
Bartlett’s weighted form of the integrated periodogram
(Bartlett, 1954; cf. Priestley, 1981)

Jn,X,f���:��
0

� In,X(y)

f(y)
dy, ��[0,�] , (8)

has been used as a building block. Bartlett’s weighted form
of the integrated periodogram was preferred to the empirical
spectral distribution function in constructing the test statistic
(6) for the following statistical reason.

Given a finite fourth moment for X and supposing that
(Xt) is the linear process (2), the limit of �n(Jn,X � F) in

8 Note that we choose to neglect the estimation error implicit in taking
the estimated values of the model’s parameters for the real ones. This
approximation is acceptable in view of the following two facts. First, a
simulation study (see section IV for a brief discussion of the results of the
study) indicates that the finite-sample distribution of the test statistic
constructed using the true parameters is very close to that of the test
statistic obtained using the estimated parameter values. More important,
our empirical experience shows that allowing for large deviations of the
asymptotic variance of the test statistics from the values prescribed by
corollary 3.2 does not change the results of the analysis at all.

9 If they do not match up, we conclude that a regime shift has occurred
and we reestimate the model.
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� [0, �], the space of continuous functions on [0, �]
endowed with the uniform topology, is an unfamiliar
Gaussian process with a covariance structure that de-
pends on the spectral density f; see for example Ander-
son (1993) or Mikosch (1998). Hence, a goodness-of-fit
test based on the asymptotic distribution of the integrated
periodogram10 is impractical, as it would require tabulat-
ing a distribution for every null hypothesis to be tested.

Dividing the periodogram by the spectral density to
produce the test statistic (6) makes the limit process inde-
pendent of the spectral density. More concretely, the process
Jn,X,f

(�), properly centered and scaled, converges in distri-
bution in the Skorokhod space � ([0, �]) to a Brownian
bridge; see Shorack and Wellner (1986) as well as theorem
3.1 in the sequel.

Let us recall now the main result, which yields the
asymptotic distribution of the test statistic (6).

Theorem 3.1 (Klüppelberg & Mikosch, 1996). Assume
that EZ � 0, EZ4 � �, and denote var(Z) � 	2. Let Xt

denote the linear processes (2.2), and 	̂2 the estimate of 	2

defined in equation (7). Then the following holds:

�n�
��

� � In,X� y�

f� y�
�

	̂2

	2�d y ™3
d

�B��/��

in � ([0, �]), where the function f is defined in equation
(3), and B(�) is a Brownian bridge.11

The following corollary yields the critical values for the
hypothesis testing central to the methodology explained
above.

Corollary 3.2. Under the hypothesis and with the nota-
tion of Theorem 3.1, we have the following:

(a) If Xt is the linear processes (2), then

�n sup
���0,��

��
��

� �In,X�y�

f�y�
�

	̂2

	2�dy� ™3d � sup
���0,��

�B��/��� . (9)

(b) Denote 	̃2 :� n�1 �
t�1

n Zt
2. If �Xt) � (Zt), then

�n�
��

� � In,X� y�

	2/ 2�
�

	̃2

	2�d y ™3
d

�B��/��,

�n sup
���0,��

��
��

� �In,X�y�

	2/2�
�

	̃2

	2�dy�3d � sup
���0,��

�B��/���

(10)

in � ([0, �]).
The distribution of the random variable sup�[0,�]�B (�)� is

known.12

We would like to emphasize the generality of theorem
3.1, which imposes only low moment restrictions13 and no
distributional restrictions on the innovations Zt.

We turn now to our detailed data analysis.

IV. Analysis of the Local Dependence Structure

We begin our data analysis with an investigation of the
local dependence structure of the logarithm of the absolute
returns Xt. The aim of this section is twofold. We want first
to measure the strength of the (local) dependence in the log
absolute returns, and second to evaluate its time evolution.
Toward these goals, we locally estimate AR(1), MA(1), and
ARMA(1,1) processes using the methodology outlined in
section II. Subsequently, we use the time-varying estimated
parameters of these processes to shed light on the two issues
of interest.

The data on which our analysis is based are the daily
returns of S&P 500 index, rt:� log Pt � log Pt�1, where Pt

is the daily closing level of the index between January 3,
1928 and May 25, 2000. There were 390 zeros among
19,261 log returns (2% of the observations), unevenly
distributed through the sample. The subsample beginning in
1928 and ending with the introduction of the current defi-
nition14 of the S&R 500 index in March 1957 contains 4%
(or 319) zeros, whereas the subsample between 1957 to
2000 contains 0.75% (or 71) zeros. When taking the loga-

10 The null hypothesis of such a goodness-of-fit test is: Data Xt
are generated by a linear process (2) with spectral density f (spec-
tral distribution function F). The test statistic is (for example)
sup���[0,�]�Jn,X(�) � F(�)�. Not rejecting the null confirms a good fit of
the hypothesized linear model with spectral density f (spectral distri-
bution function F) to the sample. Note that the asymptotic distribution
of the test statistic changes with the null hypothesis (see also
Grenander & Rosenblatt, 1984).

11 A Brownian bridge on [0,1] is defined as B(�) :� W(�) � �W(1)
where W is a standard Brownian motion.

12 Although its distribution function F(x) � 1 � 2 �k�1
� (�1)k

exp(�2k2x2) involves an infinite sum, the series is extremely rapidly
converging. Usually a few terms suffice for very high accuracy. The
limiting distribution was tabulated in Massey (1951, 1952). For example,
the 90%, 95%, and 99% quantiles are 1.225, 1.359, and 1.628 respectively.

13 Although a central limit theorem (CLT) for the integrated periodogram
(5) holds true provided 	2 � �, we are not aware if a similar result holds
for Bartlett’s weighted periodogram (8). As noted in Klüppelberg and
Mikosch (1996), the results in theorem 3.1 are sensitive to large fluctua-
tions in the innovations. This could imply that a goodness-of-fit test based
on the statistic (6) has power against an alternative of a linear model with
infinite-variance innovations. Because the result in theorem 3.1 funda-
mentally assumes i.i.d. innovations, we expect the test to have power
against alternative hypothesis that violate the i.i.d. assumption of the
sequence (Zt).

14 In 1957, the S&P 90 was expanded to 500 stocks and became the S&P
500 index. The 500 stocks contained exactly 425 industrials, 25 railroads,
and 50 utility firms. This requirement was relaxed in 1988.
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rithm of the absolute returns to produce the sequence Xt �
log�rt�, the zeros have been removed from the sample.15

To successfully implement the approach described above
we need to specify the statistical elements of the procedure,
which we do in the sequel.

A. The Test Statistic for ARMA(1,1) Processes

The test statistic we use to build the homogeneity interval
is equation (6). For an ARMA(1,1) process defined as

��B��Xt � �� � � �B� Zt, �� z� � 1 � �1z,

� � z� � 1 � �1z , (11)

the filter  and the spectral density function are

� z� �
� � z�

�� z�
, f��� �

	2

2�
�
� �e�i��

�e�i��
�2 . (12)

These quantities, related to the model, together with the
data-based periodogram (4), are all we need to construct the
test statistic according to equation (6). The method of
estimation of the ARMA parameters was that of quasi
maximum likelihood.

The size of the subsamples used in the goodness-of-fit
test was s � 250 days (roughly a business year).16 The

homogeneity interval was extended with 20 observations at
a time, that is, p � 20 (roughly a business month).

B. Local Approximation by AR(1) and MA(1) Processes

We begin by reporting the results of fitting locally sta-
tionary AR(1) and MA(1) processes defined by three pa-
rameters (�, 	2, �1), (�, 	2, �1), respectively, to the loga-
rithm of absolute returns. The findings were very similar,
and for this reason we concentrate on AR(1) approximation.

Figure 1 displays the time-varying AR(1) coefficient
estimated on intervals of homogeneity built using the meth-
odology described in section II. In calculating the test
statistic (6), �1 � 0 was used in equation (12). One notices
that the AR(1) coefficients are, most of the time, not signif-
icant. The periods when the coefficient is significant are
short, and the AR coefficient is, in absolute value, almost
always smaller than 0.18.

The situation is identical when MA(1) processes are used
as local approximations, that is, when the test statistic (6) is
built setting �1 � 0 in equation (12) and MA(1) processes
are estimated on the intervals of homogeneity so built: the
MA(1) parameter is almost always smaller than 0.15, and
most of the time not significantly different from 0. More-
over, the values �1 takes are almost identical with those
taken by �1 and displayed in figure 1.17

From the graph in figure 1 we conclude that, based on the
measures given by the AR(1) and MA(1) local approxima-
tions, there is almost no local linear dependence in the log

15 The results of the analysis remain unchanged if the zeros are replaced
with e�6.

16 This choice strikes a balance between the need for a sample that is
large enough for the asymptotics of theorem 3.1 to work and, at the same
time, short enough for the hypothesis of local stationarity to hold. The size
s has been chosen empirically. Simulation studies were conducted to
evaluate the asymptotic behavior of the test statistic (6).

17 If the AR(1) [MA(1)] coefficient is not significant, the representation
Xt � �1 Xt�1 � Zt does not differ from Xt � �1Zt�1 � Zt.

FIGURE 1.—THE TIME-VARYING AR COEFFICIENT �1 (WITH 95% CONFIDENCE INTERVALS) ESTIMATED ON THE INTERVALS

OF HOMOGENEITY OF THE LOG ABSOLUTE RETURNS OF THE S&P 500

The intervals of homogeneity correspond to the AR(1) local approximation and are built using the test statistic (6) with �1 � 0. Zero is most of the time covered by the interval.
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absolute returns. Besides short episodes when the linear
dependence is low, the data are uncorrelated.

C. Local Approximation by ARMA(1,1) Processes

The overall picture of local dependence does not change
when one uses ARMA(1,1) processes as local stationary
approximations of the dynamics of log absolute returns.
Figure 2 displays AR and MA coefficients (together with
confidence intervals) estimated on intervals of homogeneity
defined using a test statistic (6) corresponding to an
ARMA(1,1) process. For the sake of visual clarity, the
figure only displays the decade 1970–1980.18

Figure 2 summarizes two remarkable findings of the local
dependence analysis based on approximating the true data-
generating process with ARMA(1,1) stationary processes.
First, the estimated AR coefficient �1 and the minus MA
coefficient ��1, although taking a wide range of values, are
always very close. This situation corresponds to the follow-
ing particular form of equation (11):

�1 � �1B��Xt � �� � �1 � �1B�Zt,

that is, Xt � � � Zt .

Second, the 95% confidence intervals contain 0 most of the
time. This situation is typical of fitting ARMA(1,1) models
to white-noise data. As we did when using AR(1) and
MA(1) processes as local approximations, we find evidence
of the absence of local linear dependence in the sequence of
log absolute returns.

As a conclusion, in a flexible modeling framework which
nests time-varying linear dependence structure and time-
varying mean and variance, the data choose as most appro-
priate a simple model with no linear dependence but with
significant changes in the mean and in the variance of the
time series. Figures 1 and 2 suggests that piecewise, on the

intervals of homogeneity, the data are approximately a white
noise.

D. The Asymptotic Distribution of T(n, X, ��̂, 	̂2, f̂
)

In constructing the homogeneity intervals that lead to the
results presented in figure 2, we took the ARMA(1,1) linear
model estimated in the initial part of an interval of homo-
geneity for the real data-generating process of the rest of the
interval. In other words, we exchanged T(n, X, ��, 	2,f) for
T(n, X, ��̂, 	̂2,f̂

) but continued to use the asymptotic distri-
bution of the first to decide on the extension of the homo-
geneity interval. The issue of the relationship between the
distribution of the relevant test statistic T(n, X, ��̂, 	̂2, f̂

) and
the theoretical distribution of T(n, X, ��, 	2,f

) has been
addressed through a small simulation study. ARMA(1,1)
linear models with parameters (�, 	2, f) similar to the ones
obtained from the estimation procedure that produced the
results in figure 2 were simulated. For every model 1000
samples were generated. The length of the sample was 250
(the same as in the previous analysis). For every sample,
both T(n, X, ��, 	2,f

) and T(n, X, ��̂, 	̂2,f̂
) were calculated

(�̂, 	̂2, and f̂ are the sample estimates of the true parameters
�, 	2, and f). Figure 3 displays the simulation results for
the models �1 � �0.8, �1 � �0.8 (left), �1 � 0.01, �1 �
0.01 (middle), and �1 � 0.8, �1 � 0.8 (right) (� � �6, 	2 �
1.4 in all three cases). Each graph displays the QQ plot of
the sample (of size 1000) of T(n, X, ��, 	2, f

) (on the x-axis)
versus the sample (of the same length) of T(n, X, ��̂, 	̂2,f̂

)
(on the y-axis). The graphs show that, for the purpose of
testing at statistically common levels of confidence (say
95%), the distributions of the two statistics, T(n, X, ��,	2,f

)
and T(n, X, ��̂, 	̂2,f̂

) are practically identical.19

18 The rest of the sample shows the same behavior.

19 Removing the last 25 more extreme pairs in any of the graphs, that is,
2.5% of the sample, leaves us with an almost straight line, indicating very
good correspondence of the quantiles (up to the 0.975th one) of the two
distributions.

FIGURE 2.—LEFT: THE TIME-VARYING AR COEFFICIENT �1 (CONTINUOUS LINE) AND THE MINUS MA COEFFICIENT ��1 (DOTTED LINE)
ESTIMATED ON THE INTERVALS OF HOMOGENEITY OF THE LOG ABSOLUTE RETURNS OF THE S&P500

Right: The 95% Confidence Intervals for the AR Coefficient �1 Displayed on the Left. Left: The intervals of homogeneity correspond to the ARMA(1,1) local approximation scheme. Right: Zero is covered by
the interval most of the time.
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V. Local Approximation by I.I.D. Processes

The results in the previous section suggest that a simple
local approximation by processes free of second-order
structure, characterized simply by the mean � and variance
	2, might be appropriate. In this section we present the
results of an analysis that uses i.i.d. processes with changing
unconditional mean and variance to locally describe the
movements of the log absolute returns. We estimate the
time-varying first and second unconditional moments,
present some evidence supporting the choice of the simple
local approximation under discussion, and briefly discuss its
implications on describing the dynamics of the returns. Our
analysis implies the following dynamics of the data sug-
gested by the results in the previous section.

A. A Model for Returns

The results displayed in figures 1 and 2 indicate that our
data Xt � log�rt� can be modeled as independent20 and
suggest the following simple model:

Xt � ��t� � 	�t�εt , (13)

where εt are i.i.d. with Eεt � 0, Eεt
2 � 1, and where the

unconditional mean �(t) and unconditional variance 	2(t)
are functions of t. This model yields the following for the
absolute returns and the returns:

�rt� � h�t�1/ 2
t, rt � h�t�1/ 2
tSt , (14)

where h(t) :� e2�(t) E(e2	(t)εt) is the time-varying uncondi-
tional variance function, 
t :�e	(t)εt/[E(e2	(t)εt)]1/2 are inde-
pendent innovations with a time-dependent distribution, and
E
t

2 � 1. The sequence (St) is i.i.d., St � �1, 1 with
probability 0.5.

In words, the returns are modeled as independent random
variables with a time-varying unconditional variance21 (if
	2 is also changing through time, they might have other
time-varying unconditional probabilistic characteristics). In
particular, the returns are a nonstationary sequence of ran-
dom variables. Note that if 	(t) can be assumed close to
constant, then the innovation sequence (
t) can be modeled
as i.i.d., and the only time-varying feature of the returns is
the unconditional variance.

To conduct the local analysis based on approximations
with i.i.d. processes, we need to implement the steps de-
scribed in section II. In particular, we need to make precise
the test statistic to be used.

B. Test Statistic for I.I.D. Processes

Our earlier findings motivate a simpler test statistic than
equation (6), namely,

T̃�n,X,�,	2� :� sup
���0,��

��
��

� �In,X�y�

	2/2�
�

	̃2

	2�dy� , (15)

to help construct the homogeneity intervals. The asymptotic
distribution which provides the critical values needed for
hypothesis testing is given in corollary 3.2.

C. Estimation of the Time-Varying Unconditional Mean
and Variance

In approximating the movements of log absolute returns
by i.i.d. processes, the dynamics of the data is concentrated
in changes of the unconditional first two moments. Goodness-
of-fit tests based on the statistic () were used as part of the
methodology described in section II to produce homogene-
ity intervals on which the unconditional mean and variance
were estimated.

20 Further evidence supporting the choice of locally approximating the
dynamics of the logarithm of the absolute return data by i.i.d. sequences
is presented in section VI.

21 The time-varying second moment is responsible for the structure
present in the sample autocorrelation function (ACF) of absolute returns.

FIGURE 3.—QQ PLOT OF T(n, X, ��, 	2, f) (ON THE x-AXIS) VERSUS T(n, X, ��̂, 	̂2, f̂) (ON THE y-AXIS) CORRESPONDING TO ARMA(1,1) MODELS

�1 � �0.8, �1 � �0.8 (LEFT), �1 � 0.01, �1 � 0.01 (MIDDLE), AND �1 � 0.8, �1 � 0.8 (Right) (� � �6, 	2 � 1.4 IN ALL THREE CASES)

�̂, 	̂2, and f̂ are the sample estimates of the true parameters �, 	2, and f. The length of the sample on which the test statistics were calculated was 250. 1000 samples of each model were generated.
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Figure 4 displays the estimated unconditional mean �̂(t)
and the estimated unconditional variance 	̂2(t) of the loga-
rithm of absolute values of daily returns. The confidence
intervals are those given by the CLT applied to Xt and
[Xt � E(Xt)]2, respectively.

The top graph in figure 4 shows a very volatile decade
between 1928 and 1938 (the high-mean period for log
absolute returns ended rather abruptly around the beginning
of the Second World War) followed by a mild downward
trend until the middle of the 1960s (the postwar economic
boom) and a general upward trend from then to the end of
the sample. One can possibly see a certain connection
between the higher levels of the mean of log absolute
returns (hence higher unconditional variance of returns) and
the 1973 oil crisis and the economic recessions in the
beginning of the 1980s and 1990s. The strong market
movements around the 1987 stock market crash are also
visible. After a period of low mean in the middle of the

1990s, the end of the recent past period of economic
expansion that spanned the 1990s is also characterized by a
higher level of the mean of log absolute returns, that is, a
higher unconditional variance of returns.

The bottom graph in figure 4 shows a significantly lower
variance of the log absolute returns before the middle of
1950s, followed by a slight upward trend. The vertical line
corresponds to the date when the definition of the S&P 500
index changed.

Figure 5 displays some evidence supporting the choice of
i.i.d. sequences as local approximations of the dynamic of
log absolute returns.

The first two graphs in figure 5 display the sample ACF
for the logarithms of absolute values of daily returns before
and after the data were centered at the mean �̂ and stan-
dardized by the standard deviation 	̂ estimated by our
methodology. They show a strong reduction of the depen-
dence present in the sample ACF (the residual dependence

FIGURE 4.—THE ESTIMATED TIME-VARYING UNCONDITIONAL MEAN �̂ (LEFT) AND VARIANCE 	̂2 (RIGHT)
OF THE LOGARITHM OF ABSOLUTE RETURNS ON S&P 500, Xt

The dotted lines are the 95% confidence intervals based on the CLT. The vertical line in the second graph marks the date when the definition of the S&P 500 index changed (see footnote 14).
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is extremely small—less than 0.05—and confined to the
first �30 lags).22 The last graph of figure 5 presents the
sample ACF of the absolute values of centered and stan-
dardized data, �Xt � �̂(t)�/	̂(t), and shows no linear depen-
dence. The two sample ACFs corresponding to the esti-
mated residuals (the middle and right graphs in figure 5);
and showing almost no linear dependence suggest that
independent sequences indeed provide good local approxi-
mations to the dynamics of the data.

D. The S&P 500 Volatility from 1928 to 2000

The intervals of homogeneity for the logarithms of abso-
lute returns translate into intervals of homogeneity for the
absolute returns.23

Figure 6 displays, in the graph at the top, the uncondi-
tional, time-varying annualized standard deviation the re-
turns of the S&P 500 together with the returns themselves.
In the two graphs at the bottom it displays the sample ACF
for the absolute values of daily returns before and after the
data were scaled by the standard deviation in the graph on
top. The two sample ACF graphs show a strong reduction of
the dependence. The remaining dependence is small, less
than 0.15, and it is confined to the first �40 lags.

E. Intervals of Homogeneity Based on the Central
Limit Theorem

We end this section with a discussion of the performance
of our procedure on replacing the goodness-of-fit test based
on the integrated periodogram with a very simple goodness
of fit based on the CLT. The null hypothesis is that locally
the data are independent with mean � and variance 	2. The
test statistic is simply

T� �n,X,�,	�: �
X� � �

	
. (16)

The methodology outlined in section II and the test
statistic (15) were used to produce the homogeneity inter-
vals on which the first two unconditional moments were
estimated. The estimation results are displayed in figure 7.

Though the tests based on the statistic T� (n, X, �, 	)
found more changes than the integrated periodogram, the
overall pattern of change is the same. The overall amount
of dependence in the absolute returns explained by the
shifts in the first two unconditional moments (as mea-
sured by the residual correlation in sample ACF of the
standardized time series) is practically the same.

As a conclusion, the integrated periodogram approach
offers a simpler overall picture of the pattern of changes in
the long time series and, more importantly, serves to moti-
vate the assumption of locally independent log absolute
returns on which the use of the test statistic T� (n, X, �, 	) is
based.

VI. A Simple Model for the Period 1957–2000

In this section a simple model for the log absolute returns
and returns covering the period between 1957 and 2000 is
discussed. A great deal of attention is devoted to checking
the goodness of fit of the model to the data. The results
confirm our choice of modeling the return data as locally
i.i.d. sequences.

A. The Model for Returns Revisited

The bottom graph in figure 4 shows a change in the
estimated variance of the log absolute returns occurring in
the middle of the 1950s. The estimated change coincides in
date with the change in the definition of the index. Before
the mid 1950s the variance 	2 of the log absolute returns
was lower. Note also that after 1960 the value of 	2 stayed
roughly constant around 1.2 until the end of the 1980s, and
has been around 1.4 since then. Moreover, the confidence
intervals indicate that this increase may be not significant.
This motivates the assumption of constant 	 for the period

22 A better approximation (than our rough step-function approximation)
of the changing mean removes completely the linear dependence still
present in the sample ACF of log absolute returns. For an analysis
conducted on returns, see Drees and Stărică (2002) for the univariate case
and Herzel, Stărică, and Tütüncü (2002) for the multivariate case.

23 The methodology described in section II is applicable as long as the
data have a finite fourth moment; see theorem 3.1. This condition is barely
satisfied by the absolute returns, which have a negative tail index close to
4. Although strictly speaking theoretically feasible, our methodology does
not produce meaningful results when applied directly to absolute returns.

FIGURE 5.—SAMPLE ACFS OF Xt, THE LOGARITHM OF THE ABSOLUTE RETURNS ON THE S&P 500, BEFORE (LEFT) AND AFTER (MIDDLE) SUBTRACTING

THE ESTIMATED MEAN �̂ AND STANDARDIZING WITH THE ESTIMATED STANDARD DEVIATION 	̂; THE SAMPLE ACF
OF THE ABSOLUTE VALUES OF CENTERED AND STANDARDIZED DATA, Xt � �̂(t)/	̂(t) (RIGHT)
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after 1957. We will see in the sequel that this assumption
provides a good approximation to the data dynamic.

Hence, for the period between 1957 and the end of the
sample, the model for log absolute returns (13) could be
further simplified to

Xt � ��t� � 	εt , (17)

where εt are i.i.d. with Eεt � 0 and Eεt
2 � 1. This yields the

following model for the absolute returns and the returns:

�rt� � h�t�1/ 2ε̃t, rt � h�t�1/ 2ε̃tSt , (18)

with h(t) :� e2�(t) E(e2	 εt), ε̃t :� e	 εt/[E(e2	 εt)]1/2, Eε̃t
2 � 1,

St � � 1, 1 with probability 0.5, and (εt) and (St) i.i.d.
sequences.

In words, the returns are modeled as independent random
variables with a time-varying unconditional variance. They

form a nonstationary sequence, free of any dependence,24

but with a marginal distribution that evolves through time.
Moreover, the only changing probabilistic feature of the
marginal distribution is the unconditional variance.

The reduction in the complexity of the model implies also
a simplification of the statistical procedure for constructing
the homogeneity intervals.

B. The Test Statistic Revisited

In the test statistic (15), the ratio 	̃2/	2 is replaced by 1.
In this way, only the changes in the mean can produce
extreme values of the test statistic and hence cause a
homogeneity interval to end. The result of estimating the

24 Independent nonstationary sequences can display significant sample
ACF. In particular, the long-memory effect in volatility can occur for
independent sequences with a time-varying unconditional variance. For
more details on this issue, see Mikosch and Stărică (2004).

FIGURE 6.—TOP: ESTIMATED TIME-VARYING UNCONDITIONAL STANDARD DEVIATION (ANNUALIZED) WITH 95% CONFIDENCE INTERVALS TOGETHER

WITH THE RETURNS ON THE S&P 500; BOTTOM: SAMPLE ACFS OF THE ABSOLUTE VALUES OF RETURNS ON THE S&P 500
BEFORE (LEFT) AND AFTER (RIGHT) SCALING WITH THE STANDARD DEVIATION ABOVE
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function �(t) is practically identical to the one in figure 4,
and hence we do not redisplay it.

In the sequel we evaluate carefully how well the model
(17) fits the log absolute returns between 1957 and 2000.25

The assessment of the goodness of fit will also yield a
validation of the choice of modeling the return data as
locally i.i.d.

C. Goodness-of-Fit Analysis

The goodness-of-fit analysis is based on the sequence of
estimated residuals

ε̂t :� Xt � �̂�t� , (19)

where the time-varying first unconditional moment �(t) is
estimated on the homogeneity intervals constructed using
the test statistic described above.

We begin with an evaluation of the assumption that εt are
independent. Toward this end we assess the dependence in
the sequences ε̂t and �̂t�. The linear dependence is measured
via the sample ACF, and the nonlinear dependence is eval-
uated by means of copulas, a notion to be described shortly.

Independent Estimated Residuals: The top left graph in
figure 8 displays a plot of the estimated residuals. Visual
inspection shows no signs of dependence. The apparent
pattern in the lower part of the graph is due to the discrete
nature of the prices (the minimum price increment was big
in the beginning of the period compared to its end). The top
right graph displays the histogram of the estimated returns,
showing a distribution skewed to the right. The bottom left
graph is the sample ACF of the logarithm of absolute returns
between 1957 and 2000. It displays the so-called long-
memory effect in volatility. The last two graphs are the
sample ACFs of the sequence (19) and their absolute values.

The sample ACFs of the estimated residuals ε̂t as well as
their absolute values �ε̂t�, shown in the bottom row of figure
8 (middle and right), are close to being statistically insig-
nificant, indicating that almost no linear dependence re-
mains in the time series of residuals and in their absolute
values.

To search for possible patterns of nonlinear dependence,
it is most useful to have a look at copulas of estimated
residuals paired with lagged estimated residuals (ε̂t, ε̂t�i) and
the pairs of absolute values (�ε̂t�, �ε̂t�i�), i � 1, 2, . . . . Before
showing the results of this assessment, let us say a few
words about the notion of copula [for more details see
Nelsen (1999)].

25 Moving the beginning of the subsample to 1960, as the estimated
variance in figure 7 might suggest, does not change the nature of the
results in any way. Hence we preferred the longer subsample.

FIGURE 7.—TOP: THE ESTIMATED TIME-VARYING UNCONDITIONAL MEAN �̂(t) (LEFT) AND VARIANCE 	2(t) (RIGHT) OF THE LOGARITHM OF THE ABSOLUTE

RETURNS ON THE S&P 500; BOTTOM: SAMPLE ACFS OF THE ESTIMATED RESIDUALS [Xt � �̂(t)]/	̂(t) (LEFT) AND THEIR ABSOLUTE VALUES (RIGHT)

The intervals of homogeneity were constructed using the test statistic T� (n, X, �, 	) defined in equation (16). The dotted lines are the 95% confidence intervals based on the CLT.
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The joint distribution of a pair of random variables (U, V)
is uniquely determined by the marginal distribution of the
coordinates FU and FV and by their copula, that is, the
distribution on the unit square of (FU(U), FV(V)). Hence, it
is the copula that provides the complete description of the
dependence structure between the marginal random vari-
ables. Moreover, U and V are independent if and only if
their copula is the uniform copula. Graphically, this corre-
sponds to a uniform filling of the unit square by the pairs
(FU(U), FV(V)). Hence, a simple but very informative way
of assessing the independence of the coordinates of a
bivariate random vector is looking at realizations of its
copula. The appearance of a uniformly covered unit square
supports the assumption of independence the presence of
patterns indicates dependence.

To obtain the copula associated with the mentioned bi-
variate random vectors, we first transformed the residuals
and their absolute values into uniform random variables
using the empirical distribution functions F̂ε̂ and F̂�ε̂�. Then
we produced the scatterplots (Yt, Yt�i) for Yt � F̂ε̂(ε̂t) (figure
9, left) and Yt � F̂�ε̂�(�ε̂t�) (figure 9, right), and for i � 1
(figure 9, top) and i � 2 (figure 9, bottom). As mentioned,
a uniform filling of the unit square is interpreted as evidence
of independent components. The graphs in figure 9 reveal a
uniform covering of the unit square for transformed resid-

uals paired with their first and second lagged values. The
same behavior is apparent for higher lags i. This finding,
together with the previous evidence on the linear depen-
dence in the time series of estimated residuals, confirms that
the assumption of independent innovations provides a rea-
sonable approximation for the dynamics of the log absolute
data under scrutiny.

Identically Distributed Residuals: To check the rele-
vance of the assumption that the innovations are identically
distributed, we divided the sample of residuals into three
subsamples of equal length, the first corresponding roughly
to the period 1958–1972, the second to 1972–1986, and the
third to 1986–2000. Due to the discrete nature of the
observations, only the residuals bigger than �2 were in-
cluded in the subsamples. Figure 10 displays the QQ plots
corresponding to the three pairs of subsamples. Note that we
are comparing, on the three subsamples, the conditional
distribution of the residual sequence given that a value
bigger than �2 was taken. The three graphs support the
hypothesis of identically distributed innovations of the
model (17).

To summarize, the simple model (17) that assumes the
returns to be independent with a time-varying unconditional
variance describes well the data from the period 1957–2000.

FIGURE 8.—TOP: PLOT (LEFT) AND HISTOGRAM (RIGHT) OF THE ESTIMATED RESIDUALS ε̂t BASED ON THE MODEL (8) FITTED TO THE PERIOD 1957–2000;
BOTTOM: SAMPLE ACFS OF Xt, THE LOGARITHM OF THE ABSOLUTE RETURNS OF THE S&P 500, PERIOD 1957–2000 (LEFT); SAMPLE ACF

FOR THE ESTIMATED RESIDUALS ε̂t (MIDDLE); SAMPLE ACF OF THE ABSOLUTE VALUES OF RESIDUALS �ε̂t� (RIGHT)

Middle: Due to the rough approximation of the mean of the time series by a step function, the first �25 lags are slightly significant. Right: The graph shows no properties of the variance of the residuals.
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Due to the rather coarse estimation method which approx-
imates smooth functions with piecewise constant ones, the
residuals present slight traces of linear dependence. The
absolute values of the residuals seem independent. Practi-
cally speaking, all dynamics of the log absolute return (the
return) time series seem to be concentrated in shifts of the
unconditional mean (the variance).

VII. Forecasting Comparison: Nonstationary versus
Stationary and Long Memory

In the stationary framework, a sample ACF behavior like
that shown in the left graphs in figure 5 and figure 6 will be
interpreted as evidence of long memory. Hence we are
facing a modeling choice for Xt � log�rt�. The choice is

FIGURE 9.—SCATTERPLOTS (Yt, Yt�1) (TOP) AND (Yt, Yt�2) (BOTTOM) FOR Yt � F̂ε̂(ε̂t) (LEFT) AND Yt � F̂�ε̂�(�ε̂T�) (RIGHT)

The empirical distribution function estimated on the sample F̂ε̂ (f̂�ε̂�) was used to transform the marginal distribution of the data to uniform. A uniform filling of the unit square is interpreted as evidence of independent
components.

FIGURE 10.—PAIRWISE QQ PLOTS OF THREE SUBSAMPLES OF EQUAL LENGTH, ROUGHLY CORRESPONDING (LEFT TO RIGHT)
TO THE PERIODS 1958–1972, 1972–1986, AND 1986–2000

Due to the discrete nature of the data, only the returns bigger than �2 were considered.
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between a stationary long-memory model and a nonstation-
ary model with the dynamics mainly concentrated in
changes of the mean. One possible way of solving this
dilemma is to compare the forecasting behavior of two
paradigms on the data at hand. Because our approach is to
describe the volatility directly by analyzing the sequence of
absolute returns, a natural choice for a long-memory sta-
tionary model is the fractionally ARIMA class introduced
by Granger and Joyeux (1980) and Hosking (1981).

The process (Xt) is said to be a FARIMA (p, d, q) with
d � (0, 0.5) if (Xt) is stationary and satisfies the difference
equation

��B��dXt � � �B� Zt , (20)

where (Zt) is white noise and �, � are polynomials of degree
p, q respectively. The operator �d is defined by

�d:� �1 � B�d � �
j�0

�

�jB
j , (21)

where

�j �
�� j � d�

�� j � 1���1 � d�
� �

0�k�j

k � 1 � d

k
,

j � 1,2, . . . .

The data used in the out-of-sample comparison are the
logarithms of the absolute values of daily returns in the interval
1961–2000 (the data from 1957 to 1960 were used for initial
estimation of the models). A FARIMA(1,d,1) model (LM) was
estimated on the first 1000 observations (corresponding
roughly to the period 1957–1960) and reestimated every month
(that is, every 20 observations) using all the past observations.

A. Comparison of Forecasts of Daily Log Absolute Returns

With the estimated long-memory model, predictions
( f LM) for the future values of Xt � log�rt� were made every
month (that is, every 20 observations). The maximal fore-
casting horizon p was 200 days ahead. The other model
used, which will be referred as the shifts-in-the-mean model
(SM), is described by equation (17). The observations
anterior to the date when a forecast was made were used for
determining the (then) current interval of homogeneity. The
forecasts for the future values of Xt, ( f SM), were simply the
estimated means on this homogeneity interval and hence do
not change with the horizon.

One way of comparing the two forecasts would be by
assessing the orthogonality of one forecast error (at horizon
p) to the other forecast. Concretely, one can test something
less general, namely, whether one forecast error is uncorre-
lated with the other forecast. This can be accomplished by
means of a regression. For example, to test if the SM

forecasts and the LM forecast errors are uncorrelated, one
would test whether � � 0, �1 � 0 in the regression

Xt�p � f t�p
LM � � � �1 f t�p

SM � εt . (22)

However, given the possibly nonstationary nature of the
time series, the assumption of ergodic stationarity of the
regressors and dependent variables (needed for the well-
functioning of the GMM machinery) is likely to be violated
( f t�p

SM is close to a piecewise constant function).
To address this possible problem we reformulate our test.

Testing whether � � 0, �1 � 0 in equation (22) is equivalent
to testing whether

� � 0, �1 � 0, �2 � 1 (23)

in the following regression:

Xt�p � Xt � � � �1� f t�p
SM � Xt� � �2� f t�p

LM � Xt� � εt .

(24)

Notice that testing for

� � 0, �1 � 1, �2 � 0 (25)

in the same regression would be equivalent to verifying that
the SM forecast error Xt�p � f t�p

SM is uncorrelated with the
FARIMA forecast f t�p

LM. For this regression the violations of
the assumption of ergodic stationarity of the regressors and
dependent variables are likely to be less severe. Indeed, the
vector (Xt�p � Xt, f t�p

SM � Xt, f t�p
LM � Xt) is stationary and

ergodic on every interval on which the volatility process
	(t) is constant, that is, on any interval of homogeneity.
Because under the null hypothesis (25) the error term t in
the regression (24) equals the forecast error Xt�p � f t�p

SM —
which is orthogonal to anything known at date t, including
f t

(i) � Xt, i � 1, 2—the regressors are guaranteed to be
orthogonal to the error term [a similar statement holds under
the null hypothesis (23)].

Even more, figure 11 supports the hypothesis of uncorre-
lated forecast errors (the forecast errors Xt�p � f t�p

LM have a
similar behavior), and hence it appears that an OLS estimate
would suffice. Note that the regression (24) is closely related to
the so-called forecast encompassing equation

Xt�p � � � �1 f t�p
SM � �2 f t�p

LM � εt , (26)

which cannot be employed, due to the possible nonstation-
arity both of the regressors and of the dependent variables.

The p-values of the F-test Wald statistic corresponding to
H0 : � � 0, �1 � 0, and �2 � 1 and to H0 : � � 0, �1 � 1,
and �2 � 0, respectively, are reported in table 1. For most
of the forecast horizons the hypothesis of orthogonality of
the SM forecast to the LM forecast errors is rejected, while
the hypothesis of orthogonality of the LM forecast to the
SM forecast errors remains unchallenged.
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A possible critique of the previous analysis could be
that we have used daily data as a measure against which
to compare the performance of the two methodologies.
As figure 8 shows, the daily data contain a large amount

of idiosyncratic noise added to the signal of interest for
us, the mean. In other words, daily data might not provide
such a good check, as they are a poor measure of the
mean.

FIGURE 11.—TOP: THE FORECAST ERRORS Xt�p � f t�p
SM BASED ON THE MODEL (17) CORRESPONDING TO THE PERIOD 1961–PRESENT (THE PERIOD 1957–

1960 IS USED FOR THE PRELIMINARY ESTIMATION OF THE LM MODEL); BOTTOM: (LEFT) SAMPLE ACF FOR THE FORECAST ERRORS Xt�p � F t�p
SM ;

(RIGHT) SAMPLE ACF OF ABSOLUTE FORECAST ERRORS �Xt�p � f t�p
SM �.

The graphs suggest that the forecast errors are uncorrelated and homoskedastic.

TABLE 1.—COMPARISON OF FORECASTING PERFORMANCE BETWEEN THE LM MODEL AND SM MODEL

Horizon
p (days)

p-Value of the Wald Statistic for

Horizon
p (days)

p-Value of the Wald Statistic for

H0 : � � 0,�1 � 0,
�2 � 1, i.e.,
f t,p

SM � et,p
LM

H0 : � � 0,�1 � 1, �2

� 0, i.e.,
f t,p

LM � et,p
SM

H0 : �,�1 � 0, �1 � 0,
�2 � 1, i.e.,
f t,p

SM � et,p
LM

H0 : � � 0,�1 � 1, �2

� 0, i.e.,
f t,p

LM � et,p
SM

10 0.00 0.21 110 0.03 0.22
20 0.03 0.27 120 0.06 0.27
30 0.00 0.31 130 0.00 0.06
40 0.05 0.67 140 0.06 0.40
50 0.01 0.49 150 0.02 0.27
60 0.09 0.23 160 0.03 0.08
70 0.01 0.32 170 0.00 0.48
80 0.09 0.39 180 0.06 0.16
90 0.01 0.44 190 0.00 0.59

100 0.01 0.12 200 0.06 0.23

The LM process is reestimated every 20 days using all past observations. The Wald statistic of the F-ratio test is calculated under the two alternatives, and the p-values are reported. A small p-value is a signal
of the failure of the null. Overall the table shows a better performance of the SM model in forecasting. et,p

LM : � Xt�p � f t�p
LM (the forecast error of the long memory model at horizon p), and et,p

SM :� Xt�p � f t�p
SM (the

forecast error of the SM model at horizon p).
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B. Comparison of Forecasts of the Log Absolute Returns
over Various Time Intervals

To answer this possible critique and in order to get a more
complete picture, aggregated data at various horizons p
were also used as an alternative control measure. Define

Xt,p � �
i�1

p

Xt�i, f� t,p
SM � �

i�1

p

f t�i
SM, f� t,p

LM � �
i�1

p

f t�i
LM . (27)

Note that ft,p are forecasts of the mean of Xt,p. For p � 1,
through averaging, some of the idiosyncratic noise in the
daily data is canceled, yielding a better measure against
which to check the quality of the two forecasts.

We calculated and compared the MSE of the two meth-
ods, defined as

MSE*�p� :��
t�1

n

�Xt,p � f� *t,p�
2 (28)

with * standing for SM or LM.
The results are presented in table 2, where the ratio26

MSESM�p�/MSELM�p�

is given for p � 10, 20, . . . , 200. Besides the S&P 500 data,
the MSE analysis has been performed also on the returns of
the NASDAQ index between October 12, 1984 and Novem-
ber 8, 2002. The results for both series seem to support the

conclusion that the SM model outperforms the LM model in
forecasting.

VIII. Forecasting Comparison: Unconditional and
Nonstationary versus Conditional and Stationary

As this paper addresses the issue of volatility and pro-
poses a novel modeling paradigm, a comparison with the
Garch framework, the current market leader in volatility
modeling, is inevitable. In this section, we present the
results of a forecasting comparison between our model (18)
and a Garch (1,1) model.27

In the stationary, conditional framework, the working
assumption is that a stationary Garch(1,1) process

rt � 	tεt, 	t
2 � �0 � �1rt�1

2 � �1	t�1
2 , (29)

where the innovations (εt) are i.i.d., mean 0, variance 1
(Student-t distributed in the case of the Student-t Garch), is
a good approximation of the data-generating process. In the
nonstationary, unconditional setup, we assume that the
model (6.2) provides a good description of the daily returns.

We begin with an evaluation of the relevance of the
assumption of a stationary Student-t Garch(1,1) data-
generating process (DGP) for the S&P 500 return data. The
relevance of a general Garch(1,1) process, without a con-
crete specification of the conditional distribution, as DGP
for the S&P 500 return series is discussed in detail in Stărică
(2003).28

A. Student-t Garch(1,1) Model as Data-Generating Process
for Returns

The evaluation is based on the time evolution of the
estimated parameters of the model. More concretely, a
Student-t Garch(1,1) process was reestimated periodically
(every 100 days), using maximum likelihood, in three dif-
ferent setups. In the first setup, the estimation was done on
a sample which included 1000 past observations, in the
second setup the sample contained 2000 past returns, and in
the third setup, all past observations from the beginning of
the sample were used.

Figure 12 displays the results of the estimation. The
estimated parameters are plotted together with the 95%

26 Although the ratios in table 2 are sensibly different from 1 (especially
in the case of the NASDAQ index), their statistical significance is difficult
to assess. Tests of statistical significance for the differences of MSEs have
been developed in the literature [see Diebold and Mariano (1995), West
(1996), and Harvey, Leybourne, and Newbold (1997) among others]. The
null hypothesis is that Edt,p � 0, where dt,p : � SFEt,p

LM � SFEt,p
SM is the loss-

differential series, SFEt,p
LM :� (Xt,p � f� t,p

LM)2, and SFEt,p
SM :� (Xt,p � f� t,p

SM)2.
However, to the best of our knowledge, all tests assume stationarity
and short memory of the loss-differential series. Neither of these assump-
tions holds in the case at hand. Recall that we are trying to distinguish
between a null of long memory and an alternative of nonstationarity (shifts
in the mean).

27 Both a Student-t Garch, estimated with an exact maximum likelihood
approach, and a general Garch(1,1) model with a nonspecified conditional
distribution, estimated with a quasi maximum likelihood approach, were
used. With this comparison we aim at shedding some light on the the
relevance of the nonstationary, unconditional approach as compared with
the stationary, conditional modeling paradigm. We chose to specifically
include the Student-t Garch(1,1) model, following the wide consensus that
seems to exist in the financial econometric literature that this model
provides an adequate description of return data.

28 There both the analysis of the estimated model parameters and the
forecasting performance clearly show the inadequacy of the Garch(1,1)
model.

TABLE 2.—COMPARISON OF FORECASTING PERFORMANCE BETWEEN

THE LM MODEL AND SM MODEL

Horizon
p (days)

MSESM (p)/
MSELM (p)

Horizon
p (days)

MSESM (p)/
MSELM (p)

S&P 500 NASDAQ S&P 500 NASDAQ

10 0.99 1.02 110 0.91 0.56
20 0.99 0.88 120 0.91 0.54
30 0.98 0.82 130 0.91 0.53
40 0.96 0.75 140 0.91 0.52
50 0.95 0.70 150 0.91 0.51
60 0.93 0.65 160 0.91 0.51
70 0.93 0.63 170 0.91 0.51
80 0.92 0.61 180 0.91 0.51
90 0.91 0.59 190 0.91 0.51

100 0.91 0.57 200 0.91 0.51

The LM process is reestimated every 20 days using all the previous observations in the sample. The
ratio MSESM (p)/MSELM (p) is reported. A ratio smaller than 1 at horizon p indicates that the volatility
forecast of the SM model at horizon p is more precise than that of the LM model. The figure shows
overall better longer-horizon volatility forecast performance of the SM model.
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confidence intervals from the maximum likelihood estima-
tion procedure.29

If the data-generating process for the S&P 500 return
sample under scrutiny is a Student-t Garch(1,1) model, the
parameters estimated on a moving window of constant
length (figure 12, all rows, left and middle columns) should
not vary significantly through time. Even more, the esti-
mated values obtained using the whole sample (figure 12, all
rows, right column) should not differ significantly from the
ones based only on a part of the sample.

The plots in the bottom row of figure 12 show the
so-called IGARCH effect as defined and discussed in Mi-
kosch and Stărică (2004), that is, the sum �1 � �1 stays
away from 1 when estimated on shorter samples but ap-
proaches 1 when the sample size grows. In that paper the
authors argue that a possible reason for this behavior is the
nonstationarity of longer samples.

The plots in figure 12 show clear signs of instability of
the model parameters, rejecting the assumption of a station-
ary Student-t Garch(1,1) data-generating process. This find-
ing is consistent with the results in Stărică (2003), where a
Garch(1,1) is fitted to the S&P 500 returns series between
1957 and 2003 using the quasi maximum likelihood. In
contrast with the estimation yielding the parameters in
figure 12, the quasi maximum likelihood assumes, possibly
erroneously, a normal conditional distribution and allows
for the possible misspecification by using corrected, larger
confidence intervals (see Straumann & Mikosch, 2005). The
estimated quasi maximum-likelihood parameters also dis-
play a clear time evolution incompatible with the assump-
tion of a Garch(1,1) data-generating process.

B. Comparison of Longer-Horizon Volatility Forecasts

Finally, we compare the volatility forecasting results of
the two methodologies. As in the previous comparison of
MSEs, aggregated data at various horizons p are used as a

29 Note that the exact ML confidence intervals are much narrower than
the quasi-likelihood confidence intervals which allow for possible mis-
specification of the conditional distribution. See Stărică (2003).

FIGURE 12.—THE ESTIMATED COEFFICIENTS �1 (TOP), �1 (MIDDLE), AND �1 � �1 (BOTTOM) EQUATION (29),
TOGETHER WITH 95% CONFIDENCE INTERVALS

The model was reestimated every 100 days on a sample containing 1000 past observations (left column), 2000 past observations (middle column), or all the past observations (right column). The graphs reject
the hypothesis of a stationary Student-t Garch(1,1) data-generating process.
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more reliable measure against which the performances are
evaluated.

In more detail, assuming a Garch(1,1) data-generating
process (29) that also satisfies �1 � �1 � 1,30 it follows
that the minimum mean squared error (MSE) forecast for
Er2

t�p, the square daily return corresponding to the pth
day in the future

	t�p
2,Garch :� Etrt�p

2 � 	Garch
2 � ��1 � �1�

p�1�	t
2 � 	Garch

2 � ,

(30)

where 	Garch
2 :� �0/(1��1 � �1) is the unconditional vari-

ance. The minimum-MSE forecast for (rt�1 � . . . � rt�p)2,
the square of the return over the next p days, is then given
by

	� t,p
2, Garch :� Et(rt�1�· · ·�rt�p)

2�	t�1
2, Garch � · · · � 	t�p

2, Garch .

(31)

Under the model (18), the forecast for Ert�p
2 is given by

	t�p
2,SM :� Ert

2 � h�t� , (32)

with h(t) as defined by (18), whereas the forecast for
E(rt�1 � . . . � rt�p)2, the variance of the next p aggregated
returns, is simply

	� t,p
2,SM :� pErt

2 . (33)

Define the following measure of the realized volatility in the
interval [t � 1, t � p]:

r� t,p
2 :� �

i�1

p

rt�i
2 . (34)

We calculated and compared the following MSE:

MSE*�p� :� �
t�1

n

�r� t,p
2 � 	� t,p

2, *�2 (35)

with * standing for SM or Garch. The MSE (35) is preferred
to the simpler MSE

�
t�1

n

�rt�p
2 � 	t�p

2, *�2

because the latter uses a poor measure of the realized return
volatility.31 Through averaging, some of the idiosyncratic
noise in the daily squared return data is canceled, yielding
equation (34), a better measure against which to check the
quality of the two forecasts.

Besides the S&P 500 data, the MSE analysis has been
performed also on the returns of the NASDAQ index
between October 12, 1984 and November 8, 2002. The data
used in the out-of-sample variance forecasting comparison
are the daily returns in the interval 1965–2000 (the data
from 1957 to 1964 were used for initial estimation of the
models) for the S&P 500 returns, and 1993–2002 for the
NASDAQ returns (with the interval 1984–1992 for the
initial estimation). The two models were reestimated every
20 days, and forecasts were made based on the most recent
information available. Given the fact that its parameters are
significantly varying through time, the Garch model, ini-
tially estimated on a sample of length 2000, was reestimated
every 20 days on 2000 past observations.32

The results33 of the comparison are given in table 3 and in
figure 13. Table 3 reports the ratio34

MSESM�p�/MSEGarch�p�

for p � 10, 20, . . . , 200. Figure 13 gives more ample
information on the ratio of MSEs. A ratio smaller than 1 at
horizon p indicates that the volatility forecast of the SM

30 If this condition is not fulfilled, the Garch(1,1) process, although
possibly strongly stationary, has infinite variance.

31 It is well known (see Andersen & Bollerslev, 1998) that the realized
squared returns are poor estimators of the day-by-day movements in
volatility, as the idiosyncratic component of daily returns is large.

32 The choice of the reestimation sample size of 2000 was based on the
precision of the parameter estimation. In the case of a Garch(1,1) process,
this sample size guarantees acceptable standard errors for the quasi-
maximum estimators. See Straumann (2005).

33 Using a misspecified maximum likelihood (Student t could be one of
them) to estimate the Garch coefficients can yield inconsistent estimators
(see Straumann, 2005). To guard against the possibly serious conse-
quences of this type of misspecification, the Garch(1,1) coefficients were
estimated using the quasi maximum likelihood method. The results of the
forecasting exercise are qualitatively the same if a Student-t maximum
likelihood is used for estimation of the model.

34 The statistical significance of the results in table 3 has been assessed
using the test of statistical significance for the differences of MSEs due to
Diebold and Mariano (1995) (see also West, 1996; Harvey, Leybourne, &
Newbold, 1997). The null hypothesis is that Edt,p � 0, where dt,p :�
SFEt,p

Garch � SFEt,p
SM is the loss-differential series, SFEt,p

Garch :� (rt�p
2 �

	t�p
2,Garch)2, and SFEt,p

SM :� (rt�p
2 � 	t�p

2, SM)2. The assumptions on the loss-
differential series dt,p are those of stationarity and short memory. These
assumptions are likely to hold when working under the null hypothesis of
a stationary Student-t Garch(1,1) data-generating process. All differences
in table 3 are significant at the 95% level.

TABLE 3.—COMPARISON OF VOLATILITY FORECASTING PERFORMANCE BETWEEN

A GARCH(1,1) MODEL AND THE SM MODEL AT LONGER HORIZONS

Horizon
p (days)

MSESM (p)/
MSEGarch (p)

Horizon
p (days)

MSESM (p)/
MSEGarch (p)

S&P 500 NASDAQ S&P 500 NASDAQ

10 0.26 0.94 110 0.51 0.60
20 0.50 0.93 120 0.51 0.58
30 0.41 0.83 130 0.53 0.56
40 0.44 0.83 140 0.54 0.54
50 0.42 0.78 150 0.56 0.52
60 0.44 0.76 160 0.56 0.49
70 0.44 0.71 170 0.58 0.47
80 0.46 0.70 180 0.59 0.44
90 0.46 0.66 190 0.61 0.43

100 0.48 0.64 200 0.62 0.41

The two models are reestimated every 20 observations using all the past observations. The ratio
MSESM (p)/MSEGarch (p) is reported. A ratio smaller than 1 at horizon p indicates that the volatility
forecast of the SM model at horizon p is more precise than that of the Garch(1,1) model. The figure shows
overall better longer-horizon volatility forecast performance of the SM model.
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model at horizon p is more precise than that of the
Garch(1,1) model.

The results in table 3 and figure 13 show superior vola-
tility forecasting performance of the nonstationary model
(18) to that of the Garch(1,1) model for the time series
considered. They are consistent with the findings in Stărică
(2003), where a Garch(1,1) process is fitted to the S&P 500
returns series between 1995 and 2003 using the quasi
maximum likelihood. There it is shown that, in a setup close
to the one described above, a simple locally constant vola-
tility model closely related to equation (18) performed
significantly better than the Garch(1,1) model in forecasting
volatility over all horizons from 1 day to 1 business year.
The same overall picture emerges from the detailed analysis
of a large number of series of returns on various financial
indices in Herzel et al. (2004).

The results presented in table 3 and figure 12 convinc-
ingly show that a stationary Garch(1,1) is a less appealing
choice of data-generating process for the long series of daily
returns on S&P 500 under discussion than the nonstationary
model (18).

IX. Conclusions

In this paper an analysis of the S&P 500 absolute returns
has been conducted giving up the usual assumption of
global stationarity. We approximate the nonstationary data
generating process locally by stationary models and identify
the intervals on which stationary processes provide a good
approximation. This is done using a goodness-of-fit test
based on the integrated periodogram (Picard, 1985; Klüp-
pelberg & Mikosch, 1996). Our approach leads to modeling
the returns as a sequence of independent variables with a
piecewise constant variance function. More concretely, the
S&P 500 returns rt can be described by the following:

rt � h�t�1/ 2
̃t, t � 0, 1, . . . ,

where (
̃t) is an i.i.d. sequence and h(t) a function of time
which can be well approximated by a step function, yielding
a model with piecewise constant variance. We show that
even a rough approximation of the variance dynamics by a
step function is enough to explain most of the dependence
structure present in the sample ACF of long absolute return
series, providing an explanation for the so-called long-
memory-in-volatility phenomenon.

We compared the forecasting implications of our nonsta-
tionary, unconditional modeling with, first, a stationary,
long-memory paradigm, and second, a stationary, condi-
tional methodology. Both comparisons show the superiority
of the nonstationary, unconditional approach.
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Herzel, S., T. Nord, and C. Stărică, “Why Does the Garch (1, 1) Model
Often Fail to Produce Reasonable Longer-Horizon Forecasts?”
working paper, www.math.chalmers.se/�starica (2004).

Hidalgo, J., and P. M. Robinson, “Testing for Structural Change in a
Long-Memory Environment,” Journal of Econometrics 70 (1996),
159–174.

Hosking, J. R., “Fractional Differencing,” Biometrika 68 (1981), 165–176.
Hsu, D. A., R. Miller, and D. Wichern, “On the Stable Paretian Behavior

of Stock-Market Prices,” Journal of the American Statistical As-
sociation 69 (1974), 108–113.
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